A Machine Learning and Cross-Validation Approach for the Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and Multitemporal Data
نویسندگان
چکیده
This paper presents the performance and evaluation of a number of machine learning classifiers for the discrimination between the vegetation physiognomic classes using the satellite based time-series of the surface reflectance data. Discrimination of six vegetation physiognomic classes, Evergreen Coniferous Forest, Evergreen Broadleaf Forest, Deciduous Coniferous Forest, Deciduous Broadleaf Forest, Shrubs, and Herbs, was dealt with in the research. Rich-feature data were prepared from time-series of the satellite data for the discrimination and cross-validation of the vegetation physiognomic types using machine learning approach. A set of machine learning experiments comprised of a number of supervised classifiers with different model parameters was conducted to assess how the discrimination of vegetation physiognomic classes varies with classifiers, input features, and ground truth data size. The performance of each experiment was evaluated by using the 10-fold cross-validation method. Experiment using the Random Forests classifier provided highest overall accuracy (0.81) and kappa coefficient (0.78). However, accuracy metrics did not vary much with experiments. Accuracy metrics were found to be very sensitive to input features and size of ground truth data. The results obtained in the research are expected to be useful for improving the vegetation physiognomic mapping in Japan.
منابع مشابه
High-Resolution Vegetation Mapping in Japan by Combining Sentinel-2 and Landsat 8 Based Multi-Temporal Datasets through Machine Learning and Cross-Validation Approach
This paper presents an evaluation of the multi-source satellite datasets such as Sentinel-2, Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) with different spatial and temporal resolutions for nationwide vegetation mapping. The random forests based machine learning and cross-validation approach was applied for evaluating the performance of different datasets. Cross-validati...
متن کاملCombining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملProduction of Multi-Features Driven Nationwide Vegetation Physiognomic Map and Comparison to MODIS Land Cover Type Product
Irrespective of several attempts to land use/cover mapping at local, regional, or global scales, mapping of vegetation physiognomic types is limited and challenging. The main objective of the research is to produce an accurate nationwide vegetation physiognomic map by using automated machine learning approach with the support of reference data. A time-series of the multi-spectral and multi-indi...
متن کاملEvaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کاملVineyard Detection and Vine Variety Discrimination from Very High Resolution Satellite Data
In order to exploit remote sensing data operationally for precision agriculture applications, efficient and automated methods are required for the accurate detection of vegetation, crops and different crop varieties. To this end, we have designed, developed and evaluated an object-based classification framework towards the detection of vineyards, the vine canopy extraction and the vine variety ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017